Scubalike technology could suck carbon dioxide from smokestacks

first_img Email First, the team dissolves a particular BIG in water, where the substance helps break down H2O molecules into positively charged protons (H+) and negatively charged hydroxide (OH–) ions. The BIG molecules snatch free-floating protons and take on a positive charge. Those BIG ions then react with negatively charged bicarbonate (HCO3–) ions that form when CO2-rich gas bubbles through the solution, Custelcean says. Because the resulting substance doesn’t readily dissolve, it crystallizes and can be separated from the solution. Those crystals can then be heated to drive off CO2 so it can be collected and stored, rather than emitted to the atmosphere, Custelcean says. The team’s lab tests suggest that process can occur at the relatively low temperature of 120°C. So, the researchers report today in Chem, capturing and recovering CO2 from industrial exhaust using their technique takes about 24% less energy than a process commonly used in smokestack “scrubbers.” Once CO2 has been driven from the crystals, the BIG can be redissolved in the solution, making it available to capture even more CO2.The particular BIG used by Custelcean’s team sits at what Amar Flood, an organic chemist at Indiana University in Bloomington who was not involved with the work, calls a “magic sweet spot.” Its affinity for bicarbonate ions allows the crystal-forming reaction to readily occur, but the weak hydrogen bonding within the crystal also makes it relatively easy to recover the CO2.There’s a big difference between demonstrating something in a lab and using the method on a larger scale, of course. For one thing, immense amounts of BIG would be needed to perform the carbon-capture process on an industrial scale. During 2017, for example, coal-fired power plants alone in the United States emitted more than 1.2 billion metric tons of  CO2. Although a lot of BIG would be needed to outfit even a single smokestack scrubber, Custelcean says the material is reusable and inexpensive, at about $3 per kilogram. The technology that allows submariners to breathe underwater could someday allow the rest of us to breathe cooler air. Researchers have found a way to suck planet-warming carbon dioxide (CO2) from industrial smokestacks using a chemical technique similar to one scuba divers and submarines use to “rebreathe” CO2-rich exhalations.The team’s technique “has tremendous potential,” says Kristin Bowman-James, a chemist at the University of Kansas in Lawrence.The advance relies on a class of organic chemicals called bis(imino guanidines), or BIGs. These chemicals were first discovered more than a century ago, but researchers recently found that they’re really good at binding to negatively charged ions, says Radu Custelcean, a chemist at Oak Ridge National Laboratory in Tennessee. He and his colleagues harness that binding ability to capture CO2. Country * Afghanistan Aland Islands Albania Algeria Andorra Angola Anguilla Antarctica Antigua and Barbuda Argentina Armenia Aruba Australia Austria Azerbaijan Bahamas Bahrain Bangladesh Barbados Belarus Belgium Belize Benin Bermuda Bhutan Bolivia, Plurinational State of Bonaire, Sint Eustatius and Saba Bosnia and Herzegovina Botswana Bouvet Island Brazil British Indian Ocean Territory Brunei Darussalam Bulgaria Burkina Faso Burundi Cambodia Cameroon Canada Cape Verde Cayman Islands Central African Republic Chad Chile China Christmas Island Cocos (Keeling) Islands Colombia Comoros Congo Congo, the Democratic Republic of the Cook Islands Costa Rica Cote d’Ivoire Croatia Cuba Curaçao Cyprus Czech Republic Denmark Djibouti Dominica Dominican Republic Ecuador Egypt El Salvador Equatorial Guinea Eritrea Estonia Ethiopia Falkland Islands (Malvinas) Faroe Islands Fiji Finland France French Guiana French Polynesia French Southern Territories Gabon Gambia Georgia Germany Ghana Gibraltar Greece Greenland Grenada Guadeloupe Guatemala Guernsey Guinea Guinea-Bissau Guyana Haiti Heard Island and McDonald Islands Holy See (Vatican City State) Honduras Hungary Iceland India Indonesia Iran, Islamic Republic of Iraq Ireland Isle of Man Israel Italy Jamaica Japan Jersey Jordan Kazakhstan Kenya Kiribati Korea, Democratic People’s Republic of Korea, Republic of Kuwait Kyrgyzstan Lao People’s Democratic Republic Latvia Lebanon Lesotho Liberia Libyan Arab Jamahiriya Liechtenstein Lithuania Luxembourg Macao Macedonia, the former Yugoslav Republic of Madagascar Malawi Malaysia Maldives Mali Malta Martinique Mauritania Mauritius Mayotte Mexico Moldova, Republic of Monaco Mongolia Montenegro Montserrat Morocco Mozambique Myanmar Namibia Nauru Nepal Netherlands New Caledonia New Zealand Nicaragua Niger Nigeria Niue Norfolk Island Norway Oman Pakistan Palestine Panama Papua New Guinea Paraguay Peru Philippines Pitcairn Poland Portugal Qatar Reunion Romania Russian Federation Rwanda Saint Barthélemy Saint Helena, Ascension and Tristan da Cunha Saint Kitts and Nevis Saint Lucia Saint Martin (French part) Saint Pierre and Miquelon Saint Vincent and the Grenadines Samoa San Marino Sao Tome and Principe Saudi Arabia Senegal Serbia Seychelles Sierra Leone Singapore Sint Maarten (Dutch part) Slovakia Slovenia Solomon Islands Somalia South Africa South Georgia and the South Sandwich Islands South Sudan Spain Sri Lanka Sudan Suriname Svalbard and Jan Mayen Swaziland Sweden Switzerland Syrian Arab Republic Taiwan Tajikistan Tanzania, United Republic of Thailand Timor-Leste Togo Tokelau Tonga Trinidad and Tobago Tunisia Turkey Turkmenistan Turks and Caicos Islands Tuvalu Uganda Ukraine United Arab Emirates United Kingdom United States Uruguay Uzbekistan Vanuatu Venezuela, Bolivarian Republic of Vietnam Virgin Islands, British Wallis and Futuna Western Sahara Yemen Zambia Zimbabwe Neil J. Williams Sign up for our daily newsletter Get more great content like this delivered right to you! Countrycenter_img Scubalike technology could suck carbon dioxide from smokestacks Click to view the privacy policy. Required fields are indicated by an asterisk (*) By Sid PerkinsJan. 31, 2019 , 12:50 PM shaunl When a gas mixture rich in carbon dioxide bubbles through a solution of a particular organic chemical, the planet-warming gas is captured in tiny crystals (which turn the solution a whitish color).last_img

Leave a comment

Your email address will not be published. Required fields are marked *